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1. INTRODUCTION

The analysis is based on a dataset of observations of pantropical dolphins in the Gulf of
Mexico (shipped with Distance 6.0). For convenience the data are bundled in an R-friendly
format, although all of the code necessary for creating the data from the Distance project
files is available at the below URL. The OBIS-SEAMAP page for the data may be found at
http://seamap.env.duke.edu/dataset/25.

The intention here is to highlight the features of the dsm package, rather than perform a full
analysis of the data. For that reason, some important steps are not fully explored. Some
familiarity with density surface modelling is assumed.

This is a knitr document. The source for this document contains everything you need
to reproduce the analysis given here (aside from the data). The most recent version of this
document can be found at github.com/dill/mexico-data.

In section 2, we show how the data and packages can be loaded, before moving on to
describing the data and then producing some exploratory plots (in sections 3 and 4, re-
spectively). In section 5 we fit a detection function, then a selection of DSMs in section
6. A detection function with covariates is fitted in section 7. An example using correlation
structures is shown in section 8, before concluding.

2. PREAMBLE

Before we start, we load the dsm package (and its dependencies) and set some options:
library (dsm)

## Loading required package: mgcv

## This is mgcv 1.7-24.

## For overview type 'help ("mgcv-package")'.

## Loading required package: mrds

## Loading required package: optimx

## Loading required package: numDeriv

## Loading required package: Rsolnp

## Loading required package: truncnorm

## Loading required package: parallel

## This is mrds 2.1.1 Built: R 3.0.1; ; 2013-06-25 16:32:18 UTC; unix
1
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## Loading required package: ggplot2
## Loading required package: Distance
## This is dsm 2.0.5 Built: R 3.0.1; ; 2013-06-29 17:14:59 UTC;

# plotting options

gg.opts <- theme (panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.background = element_blank())

he re

set.seed (1112

1171+ @ -~ ~~AY11~ab ] e
ults reproducable

)

# Iro
# maxke

w 0

3. THE DATA

3.1. Observation and segment data. All of the data for this analysis has been nicely
pre-formatted and is shipped with dsm. Loading up that data, we can see that we have four
data frames, the first few lines of each are shown:

data (mexdolphins)
attach (mexdolphins)
head (segdata)

unix

#4 latitude longitude Effort Transect.Label Sample.Label depth X
## 1 29.94 -86.93 13800 19960417 19960417-1 135.0 134159
## 2 29.84 -86.83 14000 19960417 19960417-2 147.7 143496
## 3 29.75 -86.74 14000 19960417 19960417-3 152.1 152050
## 4 29.66 -86.65 13900 19960417 19960417-4 163.8 161102
#4# 5 29.56 -86.57 13800 19960417 19960417-5 179.7 169553
## 6 29.49 -86.49 13800 19960417 19960417-6 188.5 176793
#i# %

## 1 325561

## 2 314055

## 3 304324

## 4 293475

## 5 282984

## 6 275103

head (distdata)

## object size distance Effort detected beaufort latitude longitude
#4# 45 45 21 3296.6 36300 1 4 27.73 -86.00
#4# 61 61 150 929.2 17800 1 4 26.00 -87.63
## 63 63 125 6051.0 21000 1 2 26.01 -87.95
## 85 85 75 5499.7 21800 1 1 27.50 -90.45
## 114 114 50 7259.0 13400 1 3 27.41 -94.99
## 120 120 45 1454.8 20900 1 5 26.02 -95.97
#i# X %

## 45 228139 79258
## 61 69199 -113083
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## 63 37046 -112197
## 85 -210016 54208
## 114 -658878 43337
## 120 -764824 -111005

head (obsdata)

## object Sample.Label size distance Effort
## 45 45 19960421-9 21 3296.6 36300
## 61 61 19960423-7 150 929.2 17800
#4# 63 63 19960423-9 125 6051.0 21000
## 85 85 19960427-1 75 5499.7 21800
## 114 114 19960430-8 50 7259.0 13400
## 120 120 19960501-5 45 1454.8 20900

head (preddata)

## latitude longitude depth b y width height
## 1 30.08 -87.58 35 70832 341079 32072 37065
#H# 2 30.08 -87.42 30 86868 341079 32072 37065
#4+ 3 30.08 -87.25 27 102904 341079 32072 37065
## 4 30.08 -87.08 22 118940 341079 32072 37065
## 5 30.08 -86.92 46 134976 341079 32072 37065
## 6 29.92 -87.75 14 54888 322546 32126 37065

distdata holds the distance sampling data that will be used to fit the detection function.
segdata holds the segment data: the transects have already been “chopped” into segments.
obsdata holds the observations which have already been aggregated to the segments and
preddata holds the prediction grid (which includes all the necessary covariates).

Typically (i.e. for other datasets) it will be necessary divide the transects into segments, and
allocate observations to the correct segments using a GIS or other similar package, before
starting an analysis using dsm.

3.2. Converting units. It is important to ensure that the measurements to be used in the
analysis are in compatible units, otherwise the resulting estimates will be incorrect or hard
to interpret. Having all of our measurements in SI units from the outset removes the need
for conversion later, making life much easier. All of the data are already in the appropriate
units (Northings and Eastings: kilometres from ~ -88.32 longitude, ~27.02 latitude, which
is the centroid of the study region, multiplied up by 1000 to get the result in metres, for
consistency).

We give an example of converting the survey area here to show that this is a simple process:

# centroid
s celliC L Ol A

lon0 <- —-88.31951
lat0 <- 27.01594

sa.tmp <- latlong2km(survey.area$longitude, survey.area$latitude, lon0O = lon0,
lat0 = latO)
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survey.area <- data.frame(x = 1000 x sa.tmpS$km.e, y = 1000 x sa.tmpS$km.n)

rm(sa.tmp)

The function latlong2km uses the spherical law of cosines to convert latitude and
longitude into Northings and Eastings (thanks to Simon N. Wood for providing code).
There is extensive literature about when particular projections of latitude and longitude are
appropriate and we highly recommend the reader review this for their particular study area.
The other data frames have already had their measurements appropriately converted. By
convention the directions are named x and y.

Using latitude and longitude when performing spatial smoothing can be problematic when
certain smoother bases are used. In particular when bivariate isotropic bases are used the
non-isotropic nature of latitude and longitude is inconsistent (moving one degree in one
direction is not the same as moving one degree in the other).

The below code generates Figure 1, which shows the survey area with the transect lines
overlaid (using data from segdata).

p <- gplot(data = survey.area, x = x, y =y, geom = "polygon",

fill = I("lightblue"), ylab = "y", xlab = "x", alpha = I(0.7))
p <- p + coord_equal ()
p <- p * gg.opts

p <- p + geom_line(aes(x, y, group = Transect.Label), data = segdata)

print (p)

4. EXPLORATORY DATA ANALYSIS

4.1. Distance data. The top panels of Figure 2, below, show histograms of observed
distances and cluster size, while the bottom panels show the relationship between observed
distance and observed cluster size, and the relationship between observed distance and
Beaufort sea state. The plots show that there is some relationship between cluster size and
observed distance (fewer smaller clusters seem to be seen at larger distances).

The following code generates Figure 2:

par (mfrow = c(2, 2))

niscograms

hist (distdata$distance, main = "", xlab = "Distance (m)")

hist (distdata$size, main = "", xlab = "Cluster size")
# plots of distance vs. cluster size
plot (distdata$distance, distdata$size, main = "", xlab = "Distance (m)",
ylab = "Group size", pch = 19, cex = 0.5, col = rgb(0.74, 0.74, 0.74, 0.7))

# Im fi1t

l.dat <- data.frame(distance = seq(0, 8000, len = 1000))
lo <- 1Im(size ~ distance, data = distdata)
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FIGURE 1. The survey area with transect lines.

lines (l.datS$distance, as.vector (predict (lo, 1l.dat)))

plot (distdata$distance, distdatas$beaufort, main = "", xlab = "Distance

ylab = "Beaufort sea state", pch = 19, cex = 0.5, col = rgb(0.74,
0.74, 0.7))

4.2. Spatial data. Looking separately at the spatial data without thinking about the dis-

tances, we can see the distribution of group size in space in Figure 3, below. Circle size

indicates the size of the group in the observation. There are rather large areas with no

observations, which might cause our variance estimates to be rather large. This plot shows

that we don’t seem to have many observations in the very shallow areas near the shore.

This should make us skeptical of predictions in those areas. We will use depth later as an

explanatory covariate in our spatial model. Figure 3 also shows the raw depth data.

The following code generates Figure 3:

p <- ggplot (preddata)

p <- p + gg.opts

p <- p + coord_equal ()

p <- p + labs(fill = "Depth", x = "x", y = "y", size = "Group size")

p <- p + geom _tile(aes(x = x, yv =y, fill = depth,
width = width, height = height))

p <- p + geom_line(aes(x, y, group = Transect.Label), data = segdata)

p <- p + geom_point (aes(x, y, size = size), data = distdata, colour =

(m) ",

0.74,

"read" ,
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FIGURE 2. Exploratory plot of the distance sampling data. Top row, left
to right: histograms of distance and cluster size; bottom row: plot of
distance against cluster size and plot of distances against Beaufort sea
state.
alpha = I(0.7))
print (p)

5. ESTIMATING THE DETECTION FUNCTION

We use the ds function in the package Distance to fit the detection function. (The
Distance package is intended to make standard distance sampling in R relatively straight-
forward. For a more flexible, but harder to use, alternaitve, see the function ddf in the
mrds library.)

First, loading the Distance library:

library (Distance)
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FIGURE 3. Plot of depth values over the survey area with transects and
observations overlaid. Point size is proportional to the group size for each
observation.

We can then fit a detection function with hazard-rate key with no adjustment terms:
hr.model <- ds(distdata, max(distdataS$distance), key = "hr", adjustment = NULL)

## Fitting hazard-rate key function AIC= 841.253
## No survey area information supplied, only estimating detection function.

summary (hr.model)

#4#

## Summary for distance analysis

## Number of observations : 47

## Distance range : 0 - 7847
##

## Model : Hazard-rate key function

## AIC : 841.3

##

## Detection function parameters
## Scale Coefficients:

## estimate se
## (Intercept) 7.983 0.9532
##

## Shape parameters:
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#4 estimate se

## (Intercept) 0 0.7835

#4

## Estimate SE cv
## Average p 0.5913 0.2224 0.3762

## N in covered region 79.4879 30.8073 0.3876
The following code generates a plot of the fitted detection function (Figure 4):

plot (hr.model)
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FIGURE 4. Plot of the fitted detection function.

For brevity, detection function model selection has been omitted here. In practise we would
fit many different forms for the detection function. Later in this document, we demonstrate
fitting of a detection function with size as a covariate, but for now we stick to a simple

model.

6. FITTING A DSM

Before fitting a dsm model, the data must be segmented; this consists of chopping up the
transects and attributing counts to each of the segments. As mentioned above,

have already been segmented.

these data
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6.1. A simple model. We begin with a very simple model. We assume that the number
of individuals in each segment are quasi-Poisson distributed and that they are a smooth
function of their spatial coordinates (note that the formula is exactly as one would specify to
gam in mgcv). The abundance of clusters/groups rather than individuals can be estimated
by setting group=TRUE (though we ignore this here).

Running the model:

modl <- dsm(N ~ s(x, y), hr.model$ddf, segdata, obsdata)
summary (modl)

##

## Family: quasipoisson

## Link function: log

##

## Formula:

## N ~ s(x, y) + offset(off.set)
## <environment: 0x10a7lc2e8>

#4

## Parametric coefficients:

#4# Estimate Std. Error t value Pr(>|t])

## (Intercept) -18.409 0.394 -46.7 <2e-16 #**x*

## ———

## Signif. codes: 0 'xxx' 0.001 "xx' 0.01 'x' 0.05 '.' 0.1
#4#

## Approximate significance of smooth terms:

#4 edf Ref.df F p-value

## s(x,y) 26.1 28.2 5.61 <2e-16 ***

## ———

## Signif. codes: 0 '"xxx' 0.001 "xx' 0.01 'x' 0.05 '.' 0.1
##

## R-sqg. (adj) = 0.113 Deviance explained = 44%

## GCV score = 42.985 Scale est. = 37.611 n = 387

We can then make the predictions over the the grid and calculate abundance. First we must
create the offset (the area of each grid cell, which is 444km?).

off.set <— 444 % 1000 = 1000
modl.pred <- predict (modl, preddata, off.set)

Figure 5 shows a map of the predicted abundance. Before plotting, we bind on the predici-
tons to the data used to create them:

pp <- cbind(preddata, modl.pred)

p <- ggplot (pp) + gg.opts

p <- p + geom_tile(aes(x = x, v = vy, fill = modl.pred,
width = width, height = height))

p <- p + coord equal ()

p <- p + geom _path(aes(x = x, y = y), data = survey.area)

p <- p + labs(fill = "Abundance")

print (p)

1

1
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FIGURE 5. Predicted density surface for mod1.

We can calculate abundance over the survey area by simply summing these predictions:
sum (modl.pred)

## [1] 47034

Figure 6 shows diagnostic plots for the model, generated with the following code:.

gam.check (modl)

##

## Method: GCV Optimizer: outer newton

## full convergence after 4 iterations.

## Gradient range [4.281e-07,4.281e-07]

## (score 42.99 & scale 37.61).

## Hessian positive definite, eigenvalue range [0.4516,0.4516].
##

## Basis dimension (k) checking results. Low p-value (k-index<l) may
## indicate that k is too low, especially if edf is close to k'.
#4#

#4 k' edf k-index p-value

## s(x,y) 29.00 26.06 1.02 0.98

These show that there is some deviation in the Q-Q plot. The “line” of points in the plot of
the residuals vs. linear predictor plot corresponds to the zeros in the data.
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FIGURE 6. Diagnostic plots for mod1.

To check for residual autocorrelation we use the dsm. cor function:
dsm.cor (modl, max.lag = 10)

The plot is shown in Figure 7, and appears to have a spike at lag 6, but this is beyond the
range of being interesting.

We can use the approach of Williams et al (2011), which accounts for uncertainty in
detection function estimation in this situation where we have no covariates in the detection
function.

preddata.varprop <- split (preddata, 1:nrow(preddata))

offset.varprop <- as.list (rep(off.set, nrow(preddata)))

modl.varprop <- dsm.var.prop (modl, pred.data = preddata.varprop,
off.set = offset.varprop)

Calling summary will give some information about uncertainty estimation:
summary (modl.varprop)

## Summary of uncertainty in a density surface model calculated
## Dby variance propagation.

##
## Quantiles of differences between fitted model and variance model
#4# Min. 1lst Qu. Median Mean 3rd Qu. Max.

## -6.57e-13 -1.00e-15 1.20e-14 1.08e-13 1.11le-13 3.67e-12
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FIGURE 7. Residual autocorrelation in mod1.
##
## Approximate asymptotic confidence interval:
## 5% Mean 95%

## 29962 47034 73832
## (Using delta method)

#4#

## Point estimate : 47034
## Standard error : 10966
## Coefficient of variation : 0.2331

The section titled Quantiles of differences between fitted model
and variance model can be used to check the variance model does not have major
problems (values much less than 1 indicate no issues).

We can also make a plot of the CVs using the following code (shown in Figure 8).

plot (modl.varprop, xlab = "Easting", ylab = "Northing")

6.2. Adding another covariate to the spatial model. The data set also contains a depth
covariate (which we plotted above). We can include in the model very simply:

mod2 <- dsm(N ~ s(x, y, k = 10) + s(depth, k = 20), hr.model,
select TRUE)

(
summary (mod2)

segdata,

obsdata,
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##
##
##
##
##
##
##
##
##
##
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##
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##
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##
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FIGURE 8. Plot of the coefficient of variation for the study area with
transect lines and observations overlaid.

Family: quasipoisson
Link function: log

Formula:
N ~ s(x, vy, k = 10) + s(depth, k = 20) + offset(off.set)
<environment: 0x10b5839c8>

Parametric coefficients:
Estimate Std. Error t wvalue Pr(>|t])
(Intercept) -18.823 0.734 -25.6 <2e-16 #*%*x*

Signif. codes: 0 'xxx' 0.001 'x%x' 0.01 'x' 0.05 '.' 0.1

Approximate significance of smooth terms:

edf Ref.df F p-value
s(x,V) 3.88 9 2.06 0.00018 =*x*x*
s (depth) 10.52 19 3.15 9.9e-10 *%**
Signif. codes: 0 "sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
R-sg. (adj) = 0.0929 Deviance explained = 34%
GCV score = 46.27 Scale est. = 42.967 n = 387
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By setting the k parameter we specify the largest complexity for that smooth term in the
model; as long as this is high enough (i.e., the number in the edf column is not too close
to that in the Ref . df column), we can be sure that there is enough flexibility. However,
it may sometimes be necessary to set k to be lower than this to limit the influence of (for
example) spatial smoothers in the model.

Setting select=TRUE here imposes extra shrinkage terms on each smooth in the model
(allowing smooth terms to be removed from the model during fitting; see ?gam for more
information). Although this is not particularly useful here, this can be a good way (along
with looking at p-values) to perform term selection.

Again we can plot the predictions from this model (Figure 9, code below).

mod2.pred <- predict (mod2, preddata, off.set)

pp <- cbind(preddata, mod2.pred)

p <- ggplot (pp) + gg.opts

p <- p + labs(fill = "Abundance")

p <- p + geom_tile(aes(x = x, v = vy, fill = mod2.pred,
width = width, height = height))

p <- p + coord_equal ()

p <- p + geom path(aes(x = x, y = y), data = survey.area)

print (p)
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FIGURE 9. Predicted density surface for mod2.

Simply calling plot on the model object allows us to look at the relationship between
depth and abundance (shown in Figure 10):
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plot (mod2, select = 2)

g ° -
i
[}
F_
£z
£
(=X
[F)
T o
o i
,
.
.
L
.
[ ¥
- =1
i

1500 2000 2500

depth

3000

FIGURE 10. Plot of the smooth of depth in mod?2.

Omitting the argument select in the call to plot gives plots of all the smooth terms, one

at a time.

6.3. A more complicated model. Tweedie

Response distributions other than the quasi-Poisson can be used, for example the Tweedie
distribution. If the Tweedie is used, then the p parameter must be specified. The choice of
p is only sensitive to the first decimal place, so a quick search can be performed by simply
comparing the score of the resulting models. In this simple example we only show the

difference between two values for p.

mod3.12 <- dsm(N ~ s(x, y), hr.model,
family = Tweedie(p =1.2))
summary (mod3.12)

#4#

## Family: Tweedie(1.2)
## Link function: log
##

## Formula:
## N ~ s(x, y)
## <environment:

##

+ offset (off.set)
0x10bb3f518>

segdata,

obsdata,
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## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) -18.981 0.405 -46.9 <2e-16 **%*

## ——

## Signif. codes: 0 '"#%x' 0.001 "xx' 0.01 '+' 0.05 '.' 0.1
##

## Approximate significance of smooth terms:

#4 edf Ref.df F p-value

## s(x,y) 27.3 28.7 6.27 <2e-16 **x=x

#H# ———

## Signif. codes: 0 "sx*' 0.001 '"sx' 0.01 '«' 0.05 '.' 0.1
##

## R-sqg.(adj) = 0.0531 Deviance explained = 47.9%

## GCV score = 23.284 Scale est. = 20.239 n = 387

As well as looking at the GCV/UBRE/REML score of the model to assess the value of p
we can also look at a plot of the square root of the absolute value of the residuals versus the
fitted values (Figure 11, left panel).

where as setting p=1.7:

mod3.17 <- dsm(N ~ s(x, y), hr.model, segdata, obsdata,
family = Tweedie(p = 1.7))
summary (mod3.17)

#4

## Family: Tweedie(1.7)

## Link function: log

#4

## Formula:

## N ~ s(x, y) + offset (off.set)
## <environment: 0x1111£2790>

#4

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) -24.267 0.671 -36.2 <2e-16 *xx

## ———

## Signif. codes: 0 'x%xx' 0.001 "xx' 0.01 'x' 0.05 '.' 0.1
#4

## Approximate significance of smooth terms:

#4 edf Ref.df F p-value

## s(x,y) 28.8 29 14.4 <2e-16 **x

## ———

## Signif. codes: 0 '"xxx' 0.001 "'xx' 0.01 'x' 0.05 '.' 0.1
#4#

## R-sqg. (adj) = -9.81 Deviance explained = 53.4%

## GCV score = 9.3865 Scale est. = 8.0932 n = 387

The plot (Figure 11, right panel; code below), appears to be much flatter.
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par (mfrow = c(1, 2))
plot (sgrt (abs (residuals (mod3.12))), predict (mod3.12),
xlab = "Square root of the\nabsolute value of the residuals",

ylab

"Fitted values", main = "p=1.2")

plot (sqgrt (abs (residuals (mod3.17))), predict (mod3.17),

Fitted values

xlab "Square root of the\nabsolute value of the residuals",
ylab = "Fitted values", main = "p=1.7")
p=1.2 p=1.7
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FIGURE 11. Plot of absolute value of the residuals versus the fitted values
for the Tweedie model when p=1 .2 (left) and p=1. 7 (right). Note that
the right plot is much flatter than the left.

Note also the improvement in GCV score.

In general, a “good” value can be found by simply plotting the above along with the GCV
score for the model for values of p between 1.1 and 1.9 and looking for the best GCV and

“flattest” plot.

Soap film smoothing

To account for a complex region (e.g., a region that includes peninsulae) we can use the
soap film smoother (Wood et al. 2008).

To use a soap film smoother for the spatial part of the model we must create a set of knots
for the smoother to use. This is easily done using the make.soapgrid () function in

dsm:
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soap.knots <- make.soapgrid(survey.area, c(l1l, 6))
# knot 11 1is not outside but is too close according to soap...

soap.knots <- soap.knots[-11, ]

where the second argument specifies the number of points (in eadch direction) in the grid that
will be used to create the knots (knots in the grid outside of survey.area are removed).

As we saw in the exploratory analysis, some of the transect lines are outside of the survey
area. These will cause the soap film smoother to fail, so we remove them:

x <- segdata$x

y <- segdataSlSy

onoff <- inSide(x = x, v = Yy, bnd = as.list (survey.area))
rm(x, V)

segdata.soap <- segdata[onoff, ]

We can run a model with both the depth covariate along with a spatial (soap film) smooth.
Note that the k argument now refers to the complexity of the boundary smooth in the soap
film, and the complexity of the film is controlled by the knots given in the xt argument.

mod4 <- dsm(N ~ s(x, y, bs = "so", k = 10, xt = list(bnd = list (survey.area))) +
s (depth), hr.model, segdata.socap, obsdata, knots = soap.knots)

## Loading required package: Matrix Loading required package: lattice
summary (mod4)

##
## Family: quasipoisson
## Link function: log

#4

## Formula:

## N ~ s(x, y, bs = "so", k = 10, xt = list(bnd = list (survey.area))) +
#i# s (depth) + offset (off.set)

## <environment: 0x10a3dfdf8>

#4#

## Parametric coefficients:

#i# Estimate Std. Error t value Pr(>|t])

## (Intercept) -19.40 0.62 -31.3 <2e-16 *xx

#H# ——

## Signif. codes: 0 '"#%x' 0.001 'xx' 0.01 '+«' 0.05 '.'" 0.1 " ' 1
#4#

## Approximate significance of smooth terms:

#4 edf Ref.df F p-value

## s(x,v) 23.05 29.00 2.63 2e—07 *xx*

## s (depth) 7.08 7.89 2.57 0.01 =

## ———

## Signif. codes: 0 's%x' 0.001 '"xx' 0.01 '«' 0.05 '.'" 0.1 " ' 1
##

## R-sqg. (adj) = 0.183 Deviance explained = 45.9%

## GCV score = 45.227 Scale est. = 38.341 n = 365
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Comparing predictions from the model that included a smooth of depth, we can see that the
soap film has prevented some of the extreme values (especially in the lower right corner of
the survey area). This is shown in Figure 12 (figure created with the code below).

mod4 .pred <- predict (mod4, preddata, off.set)
pp <- cbind(preddata, mod4.pred)

<- ggplot (pp) + gg.opts

p <- p + geom_tile(aes(x = x, yv = vy, fill = mod4.pred,
width = width, height = height))

p <- p + coord_equal ()

o

p <- p + geom_path(aes(x = x, y = y), data = survey.area)
p <- p + labs(fill = "Abundance")
print (p)

Abundance
a0o

2e+05 -

2 Oa+00 -

-2e+ls -

_Sat05 De+00 Se+05

FIGURE 12. Predicted density surface for mod4.

7. ADDING COVARIATES TO THE DETECTION FUNCTION

It is common to include covariates in the detection function (so-called Multiple Covariate
Distance Sampling or MCDS). In this dataset there are two covariates that were collected on
each individual: Beaufort sea state and size. For brevity we fit only a hazard-rate detection
functions with the sea state included as a factor covariate as follows:
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hr.beau.model <- ds(distdata, max(distdata$distance),
formula = ~as.factor (beaufort), key = "hr", adjustment = NULL)
summary (hr.beau.model)

##

## Summary for distance analysis

## Number of observations : 47

## Distance range : 0 - 7847
#4

## Model : Hazard-rate key function

## AIC 1 843.7

##

## Detection function parameters
## Scale Coefficients:

#4 estimate se

## (Intercept) 7.66318 1.077

## as.factor (beaufort)2 2.27968 17.367

## as.factor (beaufort)3 0.28606 1.019

## as.factor (beaufort)4 0.07174 1.223

## as.factor (beaufort)5 -0.36399 1.537

#4

## Shape parameters:

## estimate se

## (Intercept) 0.3004 0.518

#4

#4 Estimate SE cv
## Average p 0.5421 0.1751 0.3229

## N in covered region 86.6957 29.4133 0.3393

In this example, the detection function with covariates does not give a lower AIC than the
model without covariates (hazard-rate model has AIC of 841.25 vs. 843.71 for this model).
Looking back to the bottom-right panel of Figure 2, we can see there is not a discernible
pattern in the plot of Beaufort vs distance.

The code to fit the model is similar to the other models, above. However since we are now
using a detection function with observation-level covariates, we change the response to be
Nhat so the abundances are estimated per segment and change the name ofthe detection
function model object:

mod5 <- dsm(Nhat ~ s(x, y), hr.beau.model, segdata, obsdata)
summary (mod5)

##

## Family: quasipoisson

## Link function: log

#4

## Formula:

## Nhat ~ s(x, y) + offset (off.set)
## <environment: 0x107da5320>

#4
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## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) -18.258 0.351 -52 <2e-16 **%*

## ——

## Signif. codes: 0 's%x' 0.001 'xx' 0.01 '«' 0.05 '.'" 0.1 " ' 1
##

## Approximate significance of smooth terms:

#4 edf Ref.df F p-value

## s(x,y) 26 28.1 5.77 <2e-16 *xx%*

#H# ———

## Signif. codes: 0 'x*%' 0.001 "+x' 0.01 '+«' 0.05 '." 0.1 ' "1
##

## R-sqg.(adj) = 0.118 Deviance explained = 42.9%

## GCV score = 75.24 Scale est. = 65.855 n = 387

Note that for models where there are covariates at the individual level we cannot calculate
the variance via the variance propagation method (dsm.var.prop) of Williams et al
(2011). Instead we can use a GAM uncertainty estimation and combine it with the detection
function uncertainty via the delta method (dsm.var.gam), or use the moving block
bootstrap. Other than this, all of the above functions can be used.

A plot of predictions from the covariate model:

mod5.pred <- predict (mod5, preddata, off.set)
pp <- cbind(preddata, mod5.pred)

<- ggplot (pp) + gg.opts

p <- p + geom_tile(aes(x = x, v = vy, fill = mod5.pred,
width = width, height = height))

p <- p + coord_equal ()

e}

p <- p + geom_path(aes(x = x, y = y), data = survey.area)
p <- p + labs(fill = "Abundance")
print (p)

8. CORRELATION STRUCTURES

We can use a generalized mixed model (GAMM; Wood, 2006) to include correlation between
the segments within each transect. First we re-code the sample labels and transect labels as
numeric variables, then include them in the model as part of the correlation argument.
For the sake of example we use an AR1 (lag 1 autocorrelation) correlation structure (though
the correlogram did not indicate we had issues with residual autocorrelation, we show it
here for illustrative purposes).

segdata$sg.id <- as.numeric (segdata$Sample.Label)

segdata$tr.id <- as.numeric (segdataS$Transect.Label)

modl.gamm <- dsm(N ~ s(x, y), hr.model$ddf, segdata, obsdata, engine = "gamm",
correlation = corARl (form = ~sg.id), method = "REML")

## Loading required package: nlme
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FIGURE 13. Predicted density surface for mod5.
##
## Maximum number of PQL iterations: 20

## iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6
## iteration 7 iteration 8 iteration 9 iteration 10

This example also includes using method="REML" for smoothing parameter selection.

GAMMs usually take considerably longer to fit than GAMs, so it’s usually start with a
GAM first, select smooth terms and response distribution before starting to fit GAMMs.

The object returned is part 1me (for the random effects) and part gam (for the smooth
terms). Looking at the summary () for the gam part of the model:

summary (modl.gamm$gam)

#4

## Family: quasipoisson

## Link function: log

##

## Formula:

## N ~ s(x, y) + offset (off.set)

## <environment: 0x108fbled0>

#4

## Parametric coefficients:

#4# Estimate Std. Error t value Pr(>|t])
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## (Intercept) -17.617 0.277 -63.5 <2e-16 **x

## ———

## Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '." 0.1 ' ' 1
##

## Approximate significance of smooth terms:

#4 edf Ref.df F p-value

## s(x,y) 20.4 20.4 4.08 1.5e-08 *x*x

## ———

## Signif. codes: 0 '"s%xx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 " ' 1
#4#

## R-sqg.(adj) = 0.129 Scale est. = 68.686 n = 387

And run checks on the GAM part of the object (shown in Figure 14):

gam.check (modl.gamm$gam)
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FIGURE 14. Diagnostic plots for mod1 . gamm.

We can now make predictions and compare the abundance map produced by this model to
the previous models (Figure 15):

modl.gamm.pred <- predict (modl.gamm, preddata, off.set)

pp <- cbind(preddata, N = modl.gamm.pred)

p <- ggplot (pp) + gg.opts

p <- p + geom_tile(aes(x = x, v = vy, fill = N, width = width, height = height))
p <- p + coord_equal ()

p <- p + geom _path(aes(x = x, y = y), data = survey.area)
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p <- p + labs(fill = "Abundance")
print (p)
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FIGURE 15. Predicted density surface for mod1 . gamm.

Again, estimating variance is straightforward using the variance propagation method:

modl.gamm.var <- dsm.var.prop (modl.gamm, pred.data = preddata, off.set = off.set)
##
## Maximum number of PQL iterations: 20

## iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6
## iteration 7 iteration 8 iteration 9

summary (modl.gamm.var)

## Summary of uncertainty in a density surface model calculated
## Dby variance propagation.

#4

## Quantiles of differences between fitted model and variance model
## Min. 1lst Qu. Median Mean 3rd Qu. Max.

## -4.120 -0.531 -0.244 -0.073 -0.019 19.500

#4

## Approximate asymptotic confidence interval:

## 5% Mean 95%

## 35389 45701 59018
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## (Using delta method)

##

## Point estimate : 45701
## Standard error : 5988
## Coefficient of variation : 0.131

Comparing this to the variance from mod1, we can see the GAMM offers a significant
reduction in variance:

modl.varprop <- dsm.var.prop (modl, pred.data = preddata.varprop,
off.set = offset.varprop)
summary (modl.varprop)

## Summary of uncertainty in a density surface model calculated
## Dby variance propagation.

#4#
## Quantiles of differences between fitted model and variance model
#4# Min. 1lst Qu. Median Mean 3rd Qu. Max.

## -6.57e-13 -1.00e-15 1.20e-14 1.08e-13 1.11e-13 3.67e-12
#4

## Approximate asymptotic confidence interval:

## 5% Mean 95%

## 29962 47034 73832

## (Using delta method)

##

## Point estimate : 47034
## Standard error : 10966
## Coefficient of variation : 0.2331

More information on 1me can be found in Pinheiro and Bates (2000) and Wood (2006).

9. CONCLUSIONS

This document has shown that the dsm package is a versatile and relatively easy-to-use
package for the analysis of spatial distance sampling data. Note that there are many possible
models that can be fitted using dsm and that the aim here was to show just a few of the
options. Results from the models can be rather different, so care must be taken in performing
model selection, discrimination and criticism.

NOTES

e Distance is available at http://github.com/dill/Distance as well as on CRAN.

e dsm is available (along with some documentation and hints) at http://github.com/
dill/dsm, as well as on CRAN.
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